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a b s t r a c t

Presently, a genetic algorithm (GA)-support vector machine (SVM) coupled approach is proposed for
optimizing the 2D molecular descriptor subset generated for series of P2Y12 (members of the G-protein-
coupled receptor family) antagonists, with the statistical performance and efficiency of the model being
simultaneously enhanced by SVM kernel-based nonlinear projection. As we know, this is the first QSAR
study for prediction of P2Y12 inhibition activity based on an unusually large dataset of 364 P2Y12 antago-
nists with diversity of structures. In addition, three other widely used approaches, i.e., partial least squares
(PLS), random forest (RF), and Gaussian process (GP) routines combined with GA (namely, GA–PLS, GA–RF,
GA–GP, respectively) are also employed and compared with the GA–SVM method in terms of several rig-
orous evaluation criteria. The obtained results indicate that the GA–SVM model is a powerful tool for
escriptor selection prediction of P2Y12 antagonists, producing a conventional correlation coefficient R2 of 0.976 and R2
cv

(cross-validation) of 0.829 for the training set as well as R2
pred of 0.811 for the test set, which signifi-

cantly outperforms the other three methods with the average R2 = 0.894, R2
cv = 0.741, R2

pred = 0.693. The
proposed model with excellent prediction capacity from both the internal to external quality should be

optim
helpful for screening and
development.

. Introduction

Nowadays, the most common causes of mortality from car-
iovascular and cerebrovascular diseases are endangering human
ealth all over the world. Researchers are trying their best to
evelop new drugs against these stubborn diseases, the current
herapy for which includes antiplatelet agents such as aspirin,
ipyridamole, glycoprotein IIb/IIIa antagonists, and thienopy-
idines [1]. Clopidogrel, a thienopyridine, is an oral prescription
ntiplatelet drug approved for the reduction of atherosclerotic
vents (stroke, myocardial infarction, and death) in patients
ith acute coronary syndrome that acts by blocking the adeno-

ine diphosphate (ADP)-stimulated platelet aggregation. As an
mportant platelet agonist, ADP, induces a primary aggregation
esponse and contributes to the secondary aggregation follow-
ng release from platelet dense granules upon the activation by

ther agonists [2]. ADP induces platelet aggregation via the acti-
ation of two major ADP receptors, P2Y1 and P2Y12 [3], both
embers of the G-protein-coupled receptor family [4,5]. Exper-

mental studies have demonstrated that a selective blockade

∗ Corresponding authors. Tel.: +86 411 84986062.
E-mail addresses: yanli@dlut.edu.cn (Y. Li), zswei@chem.dlut.edu.cn (S. Zhang).
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ization of potential P2Y12 antagonists prior to chemical synthesis in drug

© 2011 Elsevier B.V. All rights reserved.

of either receptor is sufficient to inhibit the platelet activation
[6]. However, P2Y12 represents a more attractive therapeutic
target for the selective modulation of ADP-induced platelet acti-
vation compared to P2Y1, because P2Y1 gene is ubiquitously
expressed, whereas P2Y12 is primarily a platelet specific recep-
tor.

Current drugs against P2Y12 receptor [7], however, suffer some
limitations. Take Clopidogrel as an example, the active metabolite
of the prodrug can irreversibly and selectively inhibit P2Y12 recep-
tor, leading to a delay for the antiplatelet efficacy for several days
[8]. This makes it less effective in acute settings and difficult to man-
age if a patient bleeds, experiences a trauma, or requires emergency
surgery. In addition, there are also some other unavoidable short-
comings which can affect the efficiency of this drug, for example,
some individuals do not metabolize the prodrug adequately and
some might be resistant to clopidogrel [9]. It is anticipated that a
direct acting, reversible P2Y12 antagonist will achieve an improve-
ment in efficacy and also exhibit an improved safety profile. Several
groups have put their efforts aimed at discovering ADP recep-

tor antagonists, including cangrelor (AR-C69931MX) and ticagrelor
(AZD-6140) [10], both of which are currently in late stage clinical
trials. Recently, John et al. have also reported an unusually large
dataset of structural diversity of P2Y12 antagonists to address the
unmet medical need for safe and effective oral antiplatelet agents

dx.doi.org/10.1016/j.aca.2011.02.004
http://www.sciencedirect.com/science/journal/00032670
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ith good human platelet rich plasma potency, selectivity, in vivo
fficacy and oral bioavailability.

As we know, novel medicines are typically developed using
trial and error approach which is normally costly and

ime-consuming. The application of in silico methods such as quan-
itative structure-activity relationship (QSAR) to this issue has the
otential to decrease substantially the time and effort required
o discover new drugs or improve current ones in terms of the
fficacy [11,12]. Therefore, in silico approaches have been suc-
essfully applied to various fields of biochemistry such as the
rediction of chromosome aberrations [13], blood–brain barrier-
enetrating agents [14], P-glycoprotein substrates and inhibitors
15], etc. However, there is still, to our best knowledge, no report
f any computational models for prediction of the P2Y12 inhibi-
ion activity up to the present. Therefore, it is necessary to build a
redictive QSAR model to fill this gap.

Among the QSAR investigations, one of the important factors
ffecting the quality of the model is the molecular descriptors used
o extract the structural information that is suitable for the model
evelopment. The software Mold2 [16] enables a rapid calculation
f a large and diverse set of descriptors encoding two-dimensional
2D) chemical structure information. By comparative analysis of

old2 descriptors with those calculated by Cerius2, Dragon or Mol-
onnZ on several data sets it has been demonstrated that Mold2

escriptors convey a similar amount of information as these widely
sed software packages [16]. Although serving as free available
oftware, Mold2 has been proved suitable not only for the QSAR
esearch [17], but also for virtual screening of large databases in
rug development [16].

The selection of appropriate approaches to building the models
s another key factor to produce an accuracy prediction. Often used
tatistical methods include the simple but interpretable multiple
inear regression (MLR) [18], PLS [19] and nonlinear, relatively not
rone to interpretable but often highly predictive methods such
s artificial neural networks (ANN) [20] and recently popular SVM,
F, GP and so forth [21–24], which is just the case in this work.
ll of these methods have a proven record of successful applica-

ions in QSAR modeling. However, several of them also often suffer
everal limitations. For example, traditional statistical method like
LR can only handle data sets where the number of descriptors (p)

s smaller than that of the molecules (n), unless a pre-selection of
he descriptors is executed (e.g. by using successive projections or
enetic algorithms [25,26], etc.). Also they are not flexible enough
nd do not account for nonlinear behavior [21]. SVM, a relatively
ew nonlinear technique employed in classification and regression
roblems [27], is not robust to the presence of a large number of

rrelevant descriptors [21]. PLS is a popular computational method
hat expresses a dependent variable in terms of linear combina-
ions of the independent variables commonly known as principal
omponents. However, PLS may not be suitable for handling mul-
iple mechanisms of action [21], such as the nonlinear biological
ehaviors.

Thus, in the present work for purpose of obtaining mathematic
odels with highly statistical performance and efficiency, GA is

elected as the feature selection method to obtain the optimal
escriptor subset when dealing with a number of descriptors. As
state-of-art algorithm that has found success in a variety of areas,
VM, has been used as a classifier in the wrapper feature selec-
ion method [28]. Among the many wrapper algorithms used, the
A, which solves optimization problems using the evolution with
ppropriate crossover and mutation operators, has been proven

s promising one due to its prominent capability in solving global
ptimization problems. However, existing GA-based wrapper was
rimarily developed for optimizing either the feature subset selec-
ion [29,30] or optimizing the parameters of various algorithms
31]. However, in SVM regression analysis, a key problem is that
a Acta 690 (2011) 53–63

the model efficiency is not only largely dependent on the feature
subset, but also on the kernel parameters needed to be optimized
simultaneously in the model generation process [32]. In light of
this, for the first time in this work, we have adopted GA to opti-
mize the SVM parameters (including not only the C and the kernel
function �, but also the variable � for the radial basis function ker-
nel) and descriptor subset simultaneously to build a reliable model.
In addition, for comparison with the GA–SVM, three other popular
methods, i.e., GA–PLS, GA–RF and GA–GP, are also applied using the
same dataset.

2. Material and experimental methods

2.1. Data sets

A large, diverse dataset of 364 antagonists of P2Y12 with defini-
tive biological values, were collected from literatures [33–36]
published by the same research group. The experimental IC50 val-
ues of all the molecules were from human platelet rich plasma
incubated with 20 �M ADP. Here, the converted molar pIC50
(−log IC50) values, ranging from 4.013 to 6.678 M, were used as the
dependent variables in the QSAR regression analysis to improve
the normal distribution of the experimental data points. As to the
selection of training/test sets which plays a crucial role in the QSAR
modeling, two split formats of approaches including (1) the sin-
gle pair of training/test sets [37–40] which is usually based on
the descriptors space such as Kennard–Stone (KS) algorithm and
Kohonen self-organizing mapping, and (2) the repeated splitting of
data to training/test sets [21,41]) both have a good record of suc-
cessful applications in QSAR modeling. Thus in this present work,
the whole data set was divided into training (291 compounds) and
test (73 compounds) sets in a ratio of 4:1 based on Kennard–Stone
algorithm, which guarantees that the points of the training set are
distributed evenly within the whole area occupied by representa-
tive points, and the closeness condition of the test set points to the
training ones is satisfied [42]. Since KS has been reported [43] to
be superior to both the random sampling (RS) and Kohonen self-
organizing mapping [44,45], it has also been successfully applied
to many QSAR researches [39,43,46]. Table 1 shows several repre-
sentative compounds together with their activity. All information
about the 364 compounds with their diverse scaffolds of structures
is provided in Table S1 (Supporting information).

2.2. Descriptors calculation and pre-processing

Construction of the 2D prediction models firstly depends
on the generation of molecular descriptors. By simply using
various molecular modeling tools, it is possible to calculate thou-
sands of these descriptors directly from the structure of any
particular molecule. In the present work, all two-dimensional
structures of the dataset were built with the ISIS/Draw 2.3 program
[47], and converted SDF format by Open Babel software pack-
age (http://openbabel.sourceforge.net/). The final structures were
transferred into Mold2 [16], a free program available to public,
to calculate molecular descriptors. The Mold2 software package
can calculate 777 molecular descriptors solely from 2D chemical
structures. Hong et al. have reported that the models generated
using Mold2 descriptors were comparable to those generated using
descriptors from the compared commercial software packages. In
our work, all original 777 molecular descriptors were calculated,

which were then preprocessed (also called unsupervised selected)
as follows: (1) descriptors containing greater than 85% zero val-
ues were removed; (2) zero- and near zero- variance predictors
were removed because such descriptors may cause the model to
crash or the fit to be unstable; and (3) one of the two descriptors

http://openbabel.sourceforge.net/
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Table 1
Representative chemical structures, actual and predicted activities by GA–SVM, GA–PLS, GA–RF and GA–GP models based on 364 P2Y12 antagonists of diverse structures.

.

Compd. Scaffold Substitute pIC50 (M) GA–SVM GA–PLS GA–RF GA–GP Ref.

R1 R

1 A – (CH2)3CF3 4.155 4.207 4.206 4.413 4.645 [33]
2 A – CH2cPent 4.086 4.138 3.939 4.208 4.701 [33]
3 A – (CH2)2CH(CH3)2 4.056 4.108 4.309 4.232 4.580 [33]

191a B Bu O(CH2)2OH 5.108 5.181 5.040 5.066 5.150 [34]
192 B Pent O(CH2)2OH 4.939 4.991 4.843 4.988 5.020 [34]
193 B Et O(CH2)2OMe 5.237 5.199 4.872 5.170 4.914 [34]
194 B Allyl O(CH2)2OMe 4.876 4.928 4.764 4.929 4.940 [34]
196a B Bu O(CH2)2OMe 5.357 5.487 5.118 5.306 5.162 [34]

297a C Pent 6.000 5.989 5.806 5.805 6.016 [36]

298 C Bu 5.620 5.672 5.704 5.694 5.788 [36]

299 C Pent 5.658 5.751 5.719 5.692 5.758 [36]

305a C Pent 6.125 6.188 6.107 6.023 5.905 [36]
323a D – H 5.721 5.487 5.284 5.642 5.534 [36]
324 D – Me 5.638 5.593 5.393 5.656 5.572 [36]
325 D – Pr 5.301 5.447 5.366 5.499 5.488 [36]
326a D – (CH ) OH 5.745 5.657 5.322 5.677 5.680 [36]

t
t
f
a

X

w
f
a
d

2

s
w
s
p
fi
c
b

2 2

329a D – (CH2)2NH2 5.959
330 D – (CH2)2NMe2 6.292

a Test set.

hat have the absolute correlations above 0.75 was omitted. After
hese steps, the number of the descriptors was reduced to 106 for
urther research. In addition, in each case, descriptors were scaled
ccording to the following formula:

n
ij = Xij − Xj,min

Xj,max − Xj,min
(1)

here Xij and Xn
ij

are the non-scaled and scaled jth descriptor values
or compound i, respectively, and Xj,min and Xj,max are the minimum
nd maximum values for jth descriptor, respectively. Thus, for all
escriptors, min(Xn

ij
) = 0 and max(Xn

ij
) = 1.

.3. GA–SVM

Genetic algorithm, derived from Darwin’s theory of natural
election and evolution, is a highly efficient optimization algorithm
hich has already been successfully applied in many QSAR analy-
es [48,49]. GA works with a set of candidate solutions called a
opulation. Based on the Darwinian principle of survival of the
ttest, GA obtains the optimal solution after a series of iterative
omputations (i.e., selection or reproduction, crossover or recom-
ination, and mutation). For variable selection issue, the binary
6.210 6.047 5.833 6.061 [36]
6.240 5.943 6.128 6.080 [36]

coding form of each chromosome is adopted with 1 and 0 represent-
ing selected and non-selected descriptors, respectively. Crossover,
the critical genetic operator that allows new solution regions in the
search space to be explored, is a random mechanism for exchanging
genes between two chromosomes using different crossover strate-
gies [32,50,51]. The simplest one point crossover was employed in
our study. In mutation the genes may occasionally be altered, i.e.,
in binary code genes the code may be changed from 0 to 1 or vice
versa. Children replace the old population using the elitism or diver-
sity replacement strategy and form a new population in the next
generation. The evolutionary process operates many generations
until the termination condition is satisfied [32,52,53]. The detailed
methodology about GA has been described everywhere [53,54].

Support vector machines are a relatively new type of learn-
ing algorithm originally introduced by Vapnik and co-workers
[55]. Because of many attractive features and promising empiri-
cal performances, it is gaining increasing popularity in many fields

including QSAR analysis [56]. Although SVM is initially developed
for binary classification, it has been extended to solve regression
problems with the given data set D = {(xi, yi)}N

i=1 obtained from a
latent function by the introduction of �-insensitive loss function,
where xi means the sample vector, yi the corresponding response,
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Fig. 1. The chromosome representation (inc

nd N the number of samples. Since for the present work, the main
im employing SVM is to predict P2Y12 inhibition activity which
elongs to the regression issue, the support vector regression (SVR)

s simply introduced with the standard form of SVR as follows [57]:

min
w,b,�,�∗

1
2

wT w + C

N∑
i=1

(�i + �∗
i )

s.t.

⎧⎨
⎩

wT �(xi) + b − zi ≤ ε + �i

zi − wT �(xi) − b ≤ ε + �∗
i

�i, �∗
i

≥ 0, i = 1, ..., N

(2)

he dual is:

min
˛,˛∗

1
2

(˛i − ˛∗
i )T Q (˛ − ˛∗

i ) + ε

N∑
i=1

(˛i + ˛∗
i ) +

N∑
i=1

zi(˛i − ˛∗
i )

s.t.
N∑

i=1

(˛i − ˛∗
i ) = 0, 0 ≤ ˛i, ˛∗

i ≤ C, i = 1, ..., N

(3)

here Qij = K(xi, xj) ≡ �(xi)T�(xj).
For SVR, the input x is mapped into a higher dimensional feature

pace by the use of a kernel function (often used in SVM including
inear, polynomial, radial basis function, and sigmoid function), and
hen a linear model given in Eq. (4) is constructed in this feature
pace:

(x, ω) =
m∑

j=1

ωjgj(x) + b (4)

here gj(x), j = 1,.., m represents a set of nonlinear transformations,
j and b are the coefficient and bias terms, respectively.

The generalization performance of SVR depends on a good set-
ing of parameters: C, ε, the kernel type and corresponding kernel
arameters. The selection of the kernel function and corresponding
arameters is very important because they define the distribution
f the training set samples in the high dimensional feature space.
here are four possible choices of kernel functions available in nor-
al algorithms [58], i.e., linear, polynomial, radial basis function,

nd sigmoid function. For regression tasks, the radial basis func-
ion kernel is often used because of its effectiveness and speed
n training process. It was also used for all SVR models in our
tudy. For the RBF kernel, the most important parameter is the
idth � of the radial basis function. The previous references [59]
ave illustrated that C is a regularization parameter that controls
he trade-off between maximizing the margin and minimizing the
raining error. If C is too small, then insufficient stress will be placed
n fitting the training data. If C is too large, then the algorithm
ill overfit the training data. The optimal value for ε depends on

he type of noise present in the data, which is usually unknown.
ven if enough knowledge of the noise is available to select an
ptimal value for ε, there is the practical consideration of the num-
er of resulting support vectors. ε-insensitivity prevents the entire
raining set meeting boundary conditions and so allows for the pos-
ibility of sparsity in the dual formulation’s solution. The value of

can affect the number of support vectors used to construct the

egression function, where the bigger ε is, the fewer support vectors
re selected. In the present work, a genetic algorithm approach was
mployed to simultaneously optimize the parameters (including
he C, width � and ε) and feature subset.
four parts of C, � , ε and the features mask).

Since RBF has been selected as a kernel function of SVR, its three
parameters (C, � and ε) and the descriptors used as input must be
optimized using our proposed GA-based system. The chromosome
comprises four parts, C, � , ε and the features mask as described
formation [32] previously. The binary coding system was used to
represent the chromosome in this work. Fig. 1 shows the binary
chromosome representation in our design process, where the defi-
nitions of the parameters are: Ci represents the ith bit’s value of bit
string that represents parameter C, and nc is the number of bits rep-
resenting parameter C; � j represents the jth bit’s value of bit string
that represents parameter � , and n� is the number of bits represent-
ing parameter �; εk represents the kth bit’s value of bit string that
represents parameter ε, and nε is the number of bits representing
parameter ε; fm represents the mask value of mth feature, and nf is
the number of bits representing the selected features, respectively.
nc, n� and nf can be modified according to the calculation precision
and/or efficiency required (nc = 20, n� = 20, nε = 20 and nf is the total
106 number of descriptors in the present work).

According to Eq. (5), the bit strings representing the genotype of
parameters C, � and ε in Fig. 1 were transformed into their pheno-
types. Note that the precision of representing parameter depends
on the length of the bit string (nc, n� and nε), and the minimum and
maximum values of the parameter are determined by the designer.
For chromosome representing the feature mask, the bit with value
‘1’ represents that the feature is selected, and ‘0’ indicates that the
feature is not selected.

p = minp + maxp − minp

2l − 1
× d (5)

where p is the phenotype of the bit string; minp and maxp are the
minimum and maximum values of the parameter, respectively; d
represents the decimal value of bit string and l is the length of the
bit string.

To evaluate whether an individual is fit to survive, fitness
function is needed in the GA. In the GA–SVM model, we used
two criteria, namely mean squared error based on 10-fold cross-
validation (MSECV) and the number of selected features, to design
the fitness function. The principle is that individuals with low
MSECV and small number of features have a high fitness value, and
thus a high probability to be passed to the next generation. A single
objective fitness function that combines the two goals into one was
designed to solve the multiple criteria problem [32], with a formula
as below:

fitness = wa × MSECV + wb ×
nf∑

i=1

fi (6)

where wa represents the weight value for MSECV, wb for the num-
ber of features respectively. fi is the mask value of the ith feature
where ‘1’ represents that feature i is selected and ‘0’ represents
that feature i is not selected. In this equation, wa can be adjusted to
100% if MSECV is the most important and generally, wa can be set
from 75% to 100% according to user’s requirements. In our study,
we set wa to 100% for the purpose of high predictive ability after
we systematically changed the weight values.
Fig. 2 depicts the design of the proposed GA–SVM approach
whose detailed explanation is as follows: (1) converting genotype
to phenotype. Each parameter and descriptor chromosome was
converted from its genotype into a phenotype; (2) feature sub-
set. After the genetic operation and the converting of each feature
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Fig. 2. System architect

ubset chromosome from the genotype into phenotype, a feature
ubset can be determined; (3) fitness evaluation. For each chromo-
ome representing C, � , ε and selected features, training dataset
s used to train the SVM, while the testing dataset is used to cal-
ulate MSECV. When the MSECV is obtained, each chromosome
s evaluated by the fitness function described in Eq. (6); (4) ter-

ination criteria. When the termination criteria are satisfied, the
rocess ends; otherwise, we proceed with the next generation; and
5) genetic operation. In this step, the system searches for better
olutions by genetic operations, including the selection, crossover,
utation, and replacement [32]. After these steps, the optimal

arameters (C, � , ε) and descriptor subset determined will also be
erved as input to the other three statistical methods for the further
nvestigation and comparison.

.4. GA–PLS

PLS is similar to principal components regression but with both
he independent and dependent variables involved in the genera-
ion of the orthogonal latent variables rather than only independent
ariables used. PLS is based on the projection of the original mul-
ivariate data matrices down onto smaller matrices (T, U) with
rthogonal columns, which relates the information in the response
atrix Y to the systematic variance in the descriptor matrix X, as

hown below:

= X̄ + TP ′ + E (7)

= Ȳ + UC ′ + F (8)

= T + H (9)
here X and Y are the corresponding mean value matrices, T and
are the matrices of scores that summarize the x and y variables

espectively, P is the matrix of loadings showing the influence of the
variables in each component, C is the matrix of weights expressing
the proposed GA–SVM.

the correlation between Y and T(X), E, F, and H are the corresponding
residuals matrices, respectively. PLS calculations also give an auxil-
iary matrix (PLS weights), which expresses the correlation between
U and X and is used to calculate the T [60]. Determination of the sig-
nificant number of model dimensions was made by cross-validation
[61].

Up to date, PLS regression algorithms have been extended to
various methods such as the kernel algorithm, the wide kernel
algorithm, SIMPLS algorithm and the classical orthogonal scores
algorithm in the R package pls [62]. In the present study, the ker-
nel algorithm was selected to build the QSAR models, and the
optimal principal component with the lowest root-mean-squared-
error (RMSE) according to the following equation was selected
based on 10-fold cross validation for further analysis.

RMSE =

√√√√√
n∑

i=1

(yi − ŷi)
2

n
(10)

where yi is the actual output and ŷi is the predicted output of the
model, and n is the number of compounds in the analyzed set,
respectively.

To reduce noise and enhance prediction performance, in the
present work, a simple combination use of PLS method with genetic
algorithm was also carried out to select the optimal descriptors
for building PLS regression model. Here, the minimum MSE based
on the 10-fold cross-validation was adopted as the fitness func-

tion. And the GA parameters were set as follows: the number of
individual (NIND) of 50, the max number of generation to evolve
(MAXGEN) of 200, the gap between the two generation (GGAP) of
0.9, and the probability of crossover (Pc) of 0.7 and others were set
to default values in the GA toolbox.
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.5. GA–RF

RF models were constructed according to the described origi-
al RF algorithm [63]. RF is an ensemble of single decision trees,
hich ensemble produces a corresponding number of outputs and

he outputs of all trees are aggregated to obtain one final prediction.
he training algorithm of RF for regression can be briefly summa-
ized as follows: (1) draw N bootstrap samples from the original
raining set; (2) construct an unpruned tree Tp (p = 1,. . ., N) with
ach training set Bp. At each node, rather than choosing the best
plit among all predictors, randomly sample mtry of the predictors
nd then choose the best split from among those variables. The tree
s grown to the maximum size and not pruned back; and (3) predict
he N trees by average for regression. RF algorithm is the same as
agging when mtry = p and the tree growing algorithm used in RF

s CART. RF algorithm is efficient especially when the number of
escriptors (p) is very large, with the reason that RF only tests the
try of the descriptors rather than the p, where the default mtry is

ne-third of the number of descriptors (p) for regression. Thus, mtry

s very small so that the search is very fast. In addition, RF is more
fficient than a single tree deriving from that RF does not do any
runing at all, while a single tree needs some pruning using cross
alidation that can take up a significant portion of the computation
ime to get the right model complexity.

RF possesses its own reliable statistical characteristics based on
OB set prediction, which could be used for validation and model

election with no cross-validation performed. It was shown that
he prediction accuracy of an OOB set and a 5-fold cross validation
rocedure was near the same [21]. Although RF performs relatively
ell “off the shelf” without expending much effort on the param-

ter tuning or variable selection [21], it is also of importance for
arrying out some tentative investigations on the changes of mtry

r descriptor selection to optimize the performance of RF.
Random forest, as a new classification and regression tool,

as not been frequently applied in QSAR, QSPR (quantitative
tructure–property relationship). Thus it is necessary to investi-
ate whether RF can obtain better statistical performance for the
urrent dataset. Here, we just present a brief introduction about
F, for more details please see the corresponding important lit-
ratures [21,63]. It has been reported that RF can show excellent
erformance even when most predictive variables are noise, and be
sed when the number of variables is much larger than the num-
er of observations, and returns measures of variable importance
21,63]. However, for approaching an ideal regression model (with
igh prediction accuracy by using less number of descriptors), a
ariable selection process is still required. To achieve the above
bject, in this work, the GA variable selection method using MSE
ased on out-of-bag of RF as the fitness function was carried out to
chieve regression task for the current P2Y12 antagonists. The GA
arameters were set to be the same as those of PLS. And perfor-
ance measures of the RF model, presently, were employed using

he R package randomForest [64].

.6. GA–GP

Preliminarily used in QSAR field, the Gaussian process (GP) [65],
n the present study, was also introduced to predict the P2Y12
ntagonists activity. Pioneering works were made by Burden [66]
ho demonstrated that GP can be applied in the QSAR modeling

f data sets of compounds active at the benzodiazepine and mus-
arinic receptors, etc. In addition, researchers [67–70] also reported

atisfactory statistical prediction performances of GP on a series of
harmacokinetic properties. Recently, GP was adopted not only for

mplementing the automatic QSAR modeling of ADME properties
71], but also for executing multivariate spectroscopic calibration
72]. All these works confirmed the feasibility of GP’s application
a Acta 690 (2011) 53–63

on QSAR studies as a promising machine learning tool. In view of
this, GP is also introduced in the QSAR modeling of P2Y12 inhibition
presently.

Being defined simply as a collection of random variables which
have a joint Gaussian distribution, a Gaussian process is completely
characterized by its mean and covariance function. One usually con-
siders the mean function to be zero everywhere. The covariance
function defines nearness or similarity between the values of tar-
gets (predictions) at two input points. More details can be found in
[65].

In the current work, to determine the best variables for
building the GP model, the Netlab toolbox was used to per-
form the Gaussian process combined with the genetic algorithm
(http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/
netlab/). Here, the squared exponential was selected as covariance
function, and other parameters were set by default. During this
process, it should be pointed out that for comparison the same
GA parameters set as those used in PLS and RF modeling were
adopted. Besides, the MSE based on 10-fold cross-validation was
employed as the fitness function. After the determination of the
optimal descriptors, we carried out further calculation of GP using
the R package kernlab [73].

2.7. Evaluation of the statistical performance

The statistical performances of the constructed models are usu-
ally evaluated by several critical parameters like the square of
correlation coefficient (R2), the RMSE described above, and the 10-
fold cross-validated R2

cv [74,75]. In case of the external validation,
the predictive capacity of the model we established was judged by
its application for prediction of test set activity values, the predic-
tive R2 (R2

pred) value of which was calculated as follows:

R2
pred = 1 −

∑test
i=1 (yi − ŷi)

2

∑test
i=1 (yi − ȳtr)

2
(11)

where yi and ŷi are the measured and predicted values of the depen-
dent variable (over the test set), respectively, and ȳtr is the averaged
value of the dependent variable for the training set and the sum-
mations run over all compounds in the test set.

3. Results and discussion

3.1. Set parameters of GA–SVM method

These parameters include the range of kernel parameter C, � , ε,
NIND, MAXGEN, GGAP, Pc and the probabilities of mutation (Pm),
which are set as follows: the minimum C = 0, maximum C = 200,
minimum � = 0, maximum � = 1000, minimum ε = 0.001, maximum
ε = 1, NIND = 50, MAXGEN = 200, GGAP = 0.9, Pc is set to 0.7 and Pm

set to default value included in the genetic algorithm tool box.

3.2. Effect of parameter optimization and selected descriptors

The prediction effect of SVM regression systems using the GA
method is evaluated by means of 10-fold cross-validation method.
The optimal parameters (C, � , ε) and proper descriptors are deter-

mined when the mean-square-root (MSE) reaches the lowest value
in terms of 10-fold cross-validation. Thus, for this dataset, the
parameter optimization ended in a lowest MSE of 0.063, the C, � and
ε fitted to 7.191, 0.183 and 0.052, respectively. Table S2 shows the
final 41 descriptors selected and their corresponding definitions.

http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
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.3. Explanation of the descriptors

Presently, a GA–SVM model was developed successfully, with
he final number of descriptors reduced to 41 (Table S2) from
he original 106 ones for further study. Here it should be pointed
ut that since in most QSAR researches a full direct explanation
or all the descriptors involved in the related model is difficult,
here most similar reported works all gave few detailed analy-

is of the descriptors involved in their model development, only
few descriptors in this work were explained. According to the

uggestion [76] that the number of compounds should be at least
times larger than that of the selected independent variables, the
odels we developed all maintain the recommended ratio. By ana-

yzing these 41 descriptors, some interesting information about
2Y12-antagonist interaction is inferred as follows.

First of all, in all selected 41 descriptors, the electronic factors
re proved to be an important kind of interactions for the bind-
ng of P2Y12 with its antagonists. In the present model there are
otally 18 descriptors (D464, D467, D472, D475, D478, D499, D500,
504, D508, D509, D525, D529, D551, D552, D559, D585, D590,
nd D592) that represent certain electronic relevant features pos-
essing about 43% of all selected descriptors, which demonstrates
learly the crucial role of electronic factors playing in describing
he inhibition activity of the antagonists. Among these, the descrip-
ors including D464, D467, D472, D475, D478, D499, D500, D504,
508 and D509 all belong to 2D autocorrelation descriptors [77],
hich represent the topological structure of compounds, but are
ore complex in nature when compared to the classical topologi-

al descriptors. The computation of these descriptors involves the
ummations of different autocorrelation functions corresponding
o different structural lags and leads to different autocorrelation
ectors corresponding to the lengths of substructural fragments.
eeping in mind of this aspect, the interpretation of the two-
imensional autocorrelation descriptors is uneasy. Basically, the
ool of 2D autocorrelation descriptors defines a wide 2D space.
erein, on behalf of a greater applicability, the physicochemical
roperties (atomic Sanderson electronegativities and atomic polar-

zabilities here) are inserted as weighting components. In addition,
525 and D529 refer to the mean molecular charge indices of order-
and order-9, respectively. The remaining descriptors (i.e., D551,
552, D559, D585, D590, and D592) are BCUT variables, which are

he eigenvalues of modified connectivity matrix, the Burden matrix
78,79]. In fact, the BCUT metrics have been successfully applied to
everal QSAR studies [50,80,81]. In summary, all these descriptors
epicted above represent certain electronic relevant information.

Furthermore, several atom-centred fragment and functional
roup counts descriptors (D715, D719, D732, D744, D745, D746,
651 and D712) may also be correlated with the H-bond forma-

ion process. Third, the hydrophobic or hydrophilic effect is also
roven to be important for the inhibition activity of the P2Y12
ntagonists. The developed model selects the descriptor relevant to
og P (D777), which indicates that it is the hydrophobic effect of the
igand that dominates its inhibition activity. Whereas at the same
ime, the descriptor D775 (hydrophilic factor) which regulates the
ydrophilicity of the molecules, is also selected by our model, sug-
esting that an enhancement of the inhibitory activity may be
chieved by substitution with more hydrophilic substituents, while
s a complete unit of molecule the antagonist should also hold cer-
ain hydrophobic features like the ring-based structures. Finally, it
s worthwhile to mention that some other descriptors are also use-
ul in the prediction of P2Y12 inhibition potency which can offer us

ome important information. For example, D142, one of the topo-
ogical descriptors, appears in the model as a Balaban type of mean
quare vertex distance index. It relates to the molecular branching
n an isomeric series, which index decreases with the increase of the

olecular branching [27]. Several other descriptors are found alone
a Acta 690 (2011) 53–63 59

may not be very conspicuous, but are valuable in the prediction of
P2Y12 inhibition activity while coupling with other factors.

In summary, it is concluded that the electronic factors,
hydrophobic and H-bond interaction play a central role in the P2Y12
inhibition of the studied antagonists. Partially, our results are sup-
ported by some references [33–36]. For example, the report [33]
indicated the importance of H-bond donors for the inhibition activ-
ity and we find that the corresponding descriptor D712 (number of
group donor atoms for H-bonds (with N and O)) also plays a part in
P2Y12 inhibition.

As expectation, an ideal QSAR model would be robust, sparse,
predictive, and interpretable. In many cases, however, such ideal is
not easy to achieve with current descriptors and response variable
mapping methods, though much effort is being expended. Con-
sequently, QSAR modeling tends to be divided into two classes
depending on the intended outcome of the study. Predictive QSAR
aims to screen large, chemically diverse compound libraries that
are often noisy, thus they often present less descriptors explana-
tion, especially, with various descriptors, which is just the case
here. In addition, in case of possible multiple mechanisms of action
among the molecules, nonlinear machine learning algorithms are
sometimes employed (like SVM) with purpose of making the cor-
responding models they built be as potent predictive as possible
so that new candidates can be assessed prior to synthesis or large
databases and virtual libraries be screened for hits, which in turn
makes the model interpretation much harder. Interpretative mod-
eling often uses linear simulation tools (like MLR), chemically
relevant and interpretable descriptors, and smaller, more con-
generic data sets that have usually been measured to a higher
degree of accuracy. As a result, it is still a difficult task to produce
an as well highly predictive as easily interpretable model. Thus,
in terms of developing a highly predictive model, the proposed
GA–SVM model in this work could implement this task.

3.4. Performance of different statistical methods

After finishing all above work, four different statistical methods
(GA–SVM, GA–PLS, GA–RF and GA–GP) are applied on the dataset
and their performances are compared with detailed statistics sum-
marized in Table 2. The representative predicted P2Y12 inhibitory
activities by these models are shown in Table 1, with the full pre-
dicted results listed in Table S1.

3.4.1. GA–SVM
Based on the determined optimal parameters by GA, the SVM

model presents an RMSE of 0.133 and 0.209 for the training and test
sets, respectively. The determined coefficient R2 reaches as high as
0.976 with R2

cv = 0.829 for the training set. The model predictabil-
ity is evaluated by an external prediction set, which illustrates R2

ts
and R2

pred values of 0.806 and 0.811, respectively. The experimental
versus predicted P2Y12 inhibition activity based on the SVM model
is shown in Fig. 3A.

3.4.2. GA–PLS
To investigate whether there is a linear relationship existing

between the descriptors and P2Y12 inhibition, the widely used PLS
approach is also applied in the present work. After GA–PLS, fifty-
seven descriptors are determined and used for further calculation.
Based on the lowest 10-fold cross-validation RMSE (0.311), a 27-
latent variable QSAR model is obtained. The statistical results of

the PLS model present a coefficient of determination R2 = 0.839,
R2

cv = 0.737 and RMSE = 0.243 for the training set, respectively. The
model was also evaluated on unseen chemicals, i.e., the test data,
resulted in R2

ts = 0.594, R2
pred = 0.577 and RMSE = 0.312 for the test

set, respectively. Fig. 3B presents a visual investigation of the PLS
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Table 2
Performance comparison between GA–SVM, GA–PLS, GA–RF and GA–GP models.

Model Calibration set Prediction set

R2 R2
cv RMSE R2

ts R2
pred

RMSE

GA–SVM 0.976 0.829 0.133 0.806 0.811 0.209
GA–PLS 0.839 0.737 0.243 0.594 0.577 0.312
GA–RF 0.966 0.750 0.128 0.745 0.739 0.245
GA–GP 0.877 0.737 0.234 0.783 0.764 0.234

. (A) G

s
t
Q

3

S
G
1
c
o
a
d
i
r
d

Fig. 3. The predicted versus the actual pIC50 values for the P2Y12 antagonists

catter plot for predicted versus experimental pIC50 values of the
raining and test sets. In a word, PLS generates a relatively poor
SAR model for these P2Y12 antagonists.

.4.3. GA–RF
Random forest effectively has only one tuning parameter, mtry.

ince in the present work, there are 38 variables to be selected by
A as the optimal subset of descriptors, the mtry value is tried from
to 38, the optimal one of which is determined also by the 10-fold

ross-validation RMSE (0.309). Thus, RF results are obtained based
n the optimal mtry (=12) and 500 trees in the forest. For the training

nd test sets, the RMSE values of 0.128 and 0.245, a coefficient of
etermination, the R2 of 0.966 are obtained. In addition, the R2

cv

s 0.750 and the R2
ts and R2

pred for the test set are 0.745 and 0.739,
espectively. Fig. 3C shows the performance of the RF model for the
ata sets.
A–SVM model; (B) GA–PLS model; (C) GA–RF model; and (D) GA–GP model.

3.4.4. GA–GP
The Gaussian process method, based on clearly defined statisti-

cal principles which is easily programmed [66], is also adopted to
predict the P2Y12 inhibition activity. It can be noted that 44 descrip-
tors are determined finally to build the optimal GP model. The
optimal inverse kernel width for the Radial Basis kernel function
(sigma) finally fixes to 0.020 based on the sigest function included
in the R package kernlab. The resulting GP model gives statistical
results of R2, RMSE, R2

cv values of 0.877, 0.234, 0.737 for the train-
ing set, and R2

ts = 0.783, R2
pred = 0.764, RMSE = 0.234 for the test set,

respectively. Fig. 3D depicts the scatter plot of the GP model based
on the current dataset.
3.5. Further tests on the external predictability

To believe firmly the performance of the prediction, the squared
correlation coefficient values between the observed and predicted
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Table 3
Comparison of the external predictability of GA–SVM, GA–PLS, GA–RF and GA–GP models for the prediction set.

Model R2 R2
o (R2 − R2

o)/R2 R2
m k k′

GA–SVM 0.806 0.792 0.018 0.710 0.999 0.999
GA–PLS 0.594 0.530 0.108 0.443 0.993 1.004
GA–RF 0.745 0.461 0.381 0.348 0.996 1.002
GA–GP 0.783 0.501 0.361 0.367 0.994 1.004

Table 4
Comparison with and without Y-randomization check of the optimal GA–SVM model.

Model Calibration set Prediction set

R2 R2
cv RMSE R2

ts R2
pred

RMSE

GA–SVMa 0.976 0.829 0.133 0.806 0.811 0.209
GA–SVMb 0.011 −0.131 0.696 0.039 −0.425 0.571
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a Without Y-randomization check.
b With Y-randomization check.

alues of the test set compounds with intercept (R2
ts) and without

ntercept (R2
o) are also calculated. Table 3 presents the values of the

arameters for all models in the present work. According to refer-
nces [42,82–84], models are considered acceptable if they satisfy
ll following conditions: (1) R2

pred > 0.5, (2) R2
ts > 0.6, and (3) R2

o is

lose to R2
ts, such that the [(R2 − R2

o)/R2] < 0.1 and 0.85 ≤ k ≤ 1.15
r 0.85 ≤ k′ ≤ 1.15. When the observed values of the test set com-
ounds (X axis) are plotted against the predicted values of the
ompounds (Y axis) with the intercept set to zero, slope of the fit-
ed line gives the value of k and interchange of the axes gives the
alue of k′ respectively. All the models (except the SVM one) have
ot satisfied the requirement of the value of (R2

ts − R2
o)/R2

ts being less
han 0.1.

Previous report [85] has illustrated that the R2
pred may not truly

eflect the predictive capability of a model on a new dataset. Also,
he squared regression coefficient (R2

ts) between the observed and
redicted values of the test set compounds does not necessarily
ean that the predicted values are very near to the observed activ-

ties (as there may be considerable numerical difference between
he values though maintaining an overall good inter-correlation).
o better evaluate the external predictive capacity of a model a
odified R2 term (R2

m) is been defined as follows [86]:

2
m = R2

ts × (1 −
∣∣∣
√

R2
ts − R2

o

∣∣∣) (12)

In case of good external prediction capacity, predicted values
ill be very close to the observed ones and thus the R2

ts value will
e very near to the R2

o one. In the best case R2
m may be equal to R2

ts,
hereas in the worst case R2

m value could be zero. Here, the three
odels (i.e., PLS, RF and GP) are all less than the recommended

alue (0.5). Only the SVM model achieves a best R2
m value of 0.710.

.6. Comparison of different approaches

After the above discussion, it can be concluded that the devel-
ped SVM model based on the GA optimization on the parameters
C, � , ε) and the descriptor subset outperforms all other three ones
n terms of the statistics. Most importantly, this model has passed
hrough every rigorous examinations, especially as it is the only
ne with an R2

m value larger than 0.5. In addition, the PLS model
s observed uniformly less accurate both in the training and test

ets when compared with other three models, suggesting that the
inear relationship of this series of P2Y12 data set is not obvi-
us compared to the nonlinear one (Fig. 3 and Table 2). Thirdly,
hough the performance of RF is better than GP in the training
et, the external evaluation of the RF model gives worse results
(Table 2), thus proving the better generalization performance of
the GP model than RF. In summary, in our modeling process the
SVM illustrates the best performances, and is more suitable to
achieve further prediction task for unknown P2Y12 antagonist data
set.

3.7. Outlier test

Outliers from a QSAR are compounds that do not fit the model or
are poorly predicted by it [87]. Many reasons may exist for the pres-
ence of outliers in the dataset used for in silico modeling. Typically,
some outliers are recognized as acting by a different mechanism of
action from other molecules, which may be well modeled by QSAR
techniques, and thus do not follow the general structure-activity
rule established by this modeling. When performed correctly, the
removal of outliers will allow for the development of stronger and
more significant models, and the outlier test is therefore reason-
able and necessary in the derived models. There are a variety of
methods to highlight outliers including, at the most basic level,
identifying those compounds with significantly high residuals from
regression-based techniques. At present, since the proposed SVM
model presents wonderful prediction ability over the others, only
this one is checked to identify possible outliers. It can be observed
that none of residuals in both the training and test sets is more than
one log unit, illustrating that the SVM model is both a robust and
predictive one. Thus it is reasonable to consider that there are no
outliers in the present SVM model.

3.8. Y-randomization check

Presently, the Y-randomization check [84] is implemented for
further assurance of the robustness of the optimal GA–SVM model.
The dependent variable is randomly shuffled and a new QSAR
model is developed using the original independent variable matrix.
The new QSAR models (after several repetitions) are expected to
possess low R2

tr, R
2
cv, R2

ts, R2
pred and high RMSE for the training and test

sets, respectively. If the opposite happens, then an acceptable QSAR
model cannot be obtained for the specific modeling method and
data. In the current work, 500 times of Y-randomization checks are
repeated and the ended results are compared with those prediction

statistics without such checks, with the average values reported in
Table 4. As shown in this table, the correlation coefficients have a
significant decline while the RMSE values sharply increase, which
indicates that the proposed GA–SVM model is not due to a chance
correlation.
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. Conclusion

In the present work, we have developed a GA–SVM method
s efficient tool for simultaneous parameters optimization and
escriptor subset selection. As far as we know, there is still no simi-

ar research reported up to now that carried out such simultaneous
eature selection and the parameters optimization (not only C, �
ut also ε) for SVM regression analysis. In addition, this is also the
rst QSAR study for the prediction of an unusually large dataset
f 364 P2Y12 antagonists with diversity of structures by using the
roposed GA–SVM.

In addition, three other widely used approaches including the
LS, RF and GP are also employed combined with GA on the dataset
nd the models they established are compared with the GA–SVM
odel in terms of several rigorous evaluation criteria. As a result,

he GA–SVM model has gone throughout all rigorous examina-
ions suggested by all relating references [42,83–85], with the best
ualities and generalization capabilities than the other approaches,
emonstrating its feasibility and reliability to derive highly predic-
ive model for P2Y12 antagonists. Results from the GA–SVM model
lso suggest that the electronic factors, hydrophobic and H-bond
nteraction play a central role in the P2Y12 inhibition. Thus, the
roposed models may provide an insight into some instructions
or further synthesis of highly potent P2Y12 antagonists and should
e useful for the predictive tasks to screen for new and potent P2Y12
ntagonists in early drug development.
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